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I. IRTRODUCTION OF THE POLARIZATION POTERTIAL

1, General System of Radial Equations

The problem of computing the effective cross sections of
electron collisions with atoms or ions amounts to the solution of
an infinite system of integro-differential equations. In order to
conduct real computations taking into aédount the prbpertiea of
atom symmetry, it is necessary that these equations be radial equa-
tions of the Hartree-Fock multifigurational type. Such equations
were obtained in the general case in reference [1]. Naturally, the
solution of an infinite system in a general case is imposcible;
however, the first approximation permits already to account for dis-
tortion effects of the incident and scattered wave and oxchingo.
In order to subsequently make these resnlts more precise,it is ﬁeces-
sary to add the accounting of atom polarization. A substantial number
of works have been lately devoted to this esubject (for example L2, 5]),
but the introduction of the polarization was usually conducted by a
special and often somewhat artificial way. '

* [RADIAL'NYYE URAVNENIYA TEORII ATOMNYRH STOLKNOVENIY}

** Institute of Physics in the name of P. N, Lebedev of the USSR
Academy of Sciences.




2.

The polarization potential for the elastic scattering was
introduced in a general form in [6] on the basis of the formal colli-
sion theory.%?he polarization potential is introduced in the first
part of this work for the elastic as well as inelastic scattering
on the basis of the standard system of rédial equations by way of
its solution by the method of consecutive approximations.!Some of the | .
approximate representations of this potential are discussed in the \
second part of the current paper.

For the sake df sipplicity reference will be made to neutral
atoms in all subsequent considerations; however, all these results
are easily generalized to ions by way of the well known modification
of boundary conditions,

The effective cross section of the process a_-» & may be

°
written in the form

-?mé,ﬁlﬁ(fl'o)fa;(lfoil" L ‘(ié)f

. k o . . "

o (il = 1 o L oro Fefrads (10
=-_______2S"+1 =1 “;.___..‘ |

¢ ..2(1 o) )

2(2S0+1)

where "= JLTST is a complete set of quantum numbers of the aystem
from the atom in the state a(a = YLS) and the outer electron in the
state ki, ITS,! are the system's over-all moments. )
The signs + correspond to the synmetrical_;(srzs},- —;-)
and "antisymmetricdvl(Sfasb*'é) - scattering inrcoffééponh;nce with
the symmetry properties of system's radial functions. The initial state
is denoted by the index sero, The P-matrix is defined by the asympto-
tic of outer electrons' wave functions.
The igtegro-differential equations obtained in the work [1)
for these functions, have the form:

oo/oa
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[Lr+kYFr(r) :;;Urr'(r) Fe'(r), (2)
Fr(0) =0; Fr~&rr,sin (kl'— gj) +Trr &*". (3*)
resoo o ;
Here L, is the usual Bartree-Fock operator:
br- £ _ __Q‘L‘) U, 4).

The potentials Up and Upps include the direct as well as
the exchange interaction, i, e, they are in the general case the
integral operators:

Urc'Fr* = Yot Y Fr— Z8ir ¥y Per. (5)

Vie (r) =2 f = Pulr) P (sa)

y‘. (r) -2f (l—ﬁ.oh'rvf>)}’ur(fx)Fr'(fl) dr,, (56)

where ro and r, are respectively the greater and the lesser of
the values of r and Ty Pnb and Pn'l' are the radial functions of
atom's optical electron.

The diagonal potentials Ur=Um4Urr,  where Upp describes
the Hartree-Fock interaction with the optical electron, and is deter-
mined by the formula (5), and Urc ~— the interaction with electrons
of atom residuum. To curtail the writing the definition of radial in-
tegrale Y. (r) is somewhat different than in the paper [1]. In particu-
lar, Rydberg units are used everywhere for energy. The formulae for
®y Ps Yso Obtained in (11, ere given in the Appendix 1. |

" [N.B.l.- If the incident wave is flat, there exist a 'ult:.tude of
values of ['gwith the given a,, but with all kinds of 1 L,Sy. This

is taken into account when deriving formulae for cross sections. In
particular, when computing differential and M- sublevel excitation
cross sections, there occurs a wave interference with various Io’ But
after the type (1)-formula is written, all partial incident waves may
be considered 1ndependent when resolving the radial equationa (2).
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The equation (2), account being taken of boundary conditions
(3), may be rewritten in the form of integral equations. Let ¥, ? be
two lineraly independent solutions of a homogenous equation, and let
G(r,r') be the Green fnnction s

(L+AGF(r) =0; [L+k%FAr)=0, (6)
(L+RIAGr, P)=8(r—r1, )

with ¥ and F 5atis£ying the boundary conditions : F(0)= o0,

n)3 (*"' r)

Fesin (1r— 32+ w0, (@)

?’-%e"; '7~-;-e-",(k’<0; kmig). | k86)

The Green function is expressed by means of F 4a.nd ?t
| G =~FeaFe). e
Let us introduce besides the integral operator a:
| _6¢-{°°a(r,_r')¢(f) dr, c (10)

Then, the system of integral equations, equivalent to formulae (2) and

(3), may be written in the form:
Fr-i’rﬁm'l-brzurr"’r‘- A - (")

Hence, utilizing the expressions (3), (Sa), (9), we shall obtain the

T-matrix : o
Tery =8rree’ wsinne— o [ Fr Urr'Fr’df (12)
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2, POLARIZATION POTENTIAL, REPRESENTATION OF DISTORTED WAVES,

Let us now make use of consecutive approximation method for
the solution of the system of integral equations (11), taking for
initial : F® =Frbrq,. We shall have in the first approximation :

| F®=Fr; F;’?(‘;rUrrufr,.»_ ‘ (13)
"(F=£T,)
T, =ewsinng T=— f FelerFedr. (1)
> .

This is_ the known first approximation of the distorted wave method.
The functiomns f‘,. are wave functions of elastic scattering in the
Hartree-Fock a;pproxiution'(i.e. in a stationary field U, without
accounting the atom polarization by the outer electron). If we replace'
L by a free motion operator (i.e. if we drop all Up ), we shall
obtain the first Born approximatiom in the representation of partial
waves, At the same time all %= 0 and

Fakrjp(kr); F=irh®(kr) (£2>0), " (153)
Feqritlgr); F=rkr(¢r)  (k2<0), (156)

where jz and hgl) are Bessel and . K_ankel spherical functions, and

:Lz and kz are the corresponding functions of the fictitious argument.
Effecting the following iterations and pursuing the process

to as high as desirable approximations, we obtain the exact solution

in the form: ) 7 o o
Fr=F{ 4+ GrVrroFr, . - (16)

Trry= ) - -‘5 PV, Fr, dr. (17)

The correction for the elastic (I'=I,) and inelastic (I's£ly) scattering
has an identical form. GVir, is the re-olvent of the system (11).



The sense of Vﬂ-o is particularly clearly seen from the expression
for the amplitude of the inelastic scattering:

- -]
1 f=.,,, —
Trrem— & J FUnct Vir)Frdr.  (18)
As may be seen, vl"l" o describes the correction for the mean potential
at the expense of the correlation of electron motion (flow). That is
why vl"f‘o may be called the polarization potential (generalized).
The nonlocal character constitutes its essential peculiarity:

Vieam[Vir(r, o) dr. ()

vf’fo may be represented in the form of eerigs by powers U'..irk :

VenmZ ZUrr.. . rire (20)
Ul‘l‘| reslgailTey = Uﬁ'uéh Ul':l'ln .. Gl‘._ﬂ Ul'n-.fo- (21)

The kernel of the ope:ator Uty oo v . Taeife obviously has the form: -

Urty ... Cairel(r, ) =
=[dr...draa Upr,(r) Gry(ry 1) ... Urer(F).  (21a)

Let us finally note still another essential circumstance.
According to the expression (8a), the functions F are complex.
Let us introduce the real function F=enF’ Then the matrix (element
of the elastic collision will be wpitten in the form

Troro=€' "-'Simlo— e% f Fr, Vr.r.ﬁ.drl. ‘(18a-)

The integral in the right-hand part is real, and, as a rule, negative
(at least in the adiabatic approximation), That is why the polariza-
tional correction is somehow shifted in phase by a quantity ﬂo rela-
tive to the first approximation. Formula (18) attests to the fact that

such shift is absent for the inelastic scattering.



3, REPRESENTATION OF THE ELASTIC SCATTERING

In the above-presented formulas the polarization was factually
taken into account within the framework of the perturbation theory.
" Let us consider now another representation in which exact wave func-
tions of elastic scattering 9}, are utiliged in en arbitrary state ['.
Such a function constitutes the solution of the Schr¥dinger one-part
equation :

L=+ Fr -?0. S | (22)
P ~efsin (kr-—-%— _-l'a)—slu( f%-)+
+Trr¢‘(b—-‘;.)’ :7:'_ (0) 0, ] ; (23)

where & is the exact phase of scattering. amd Y~ 4is the new pola-
rization potential. To determine it, we shall take advantage of the

fact that, according to the expressions (13) and (16), ¥

~ may be re-

presented in the form o ‘ _
%Bfr-i-érv,rrg’r. . ' - (24)

On the other hand, the equation (22) may be rewritten in the form of

integral equation o L
grﬂfr'*-ér%g"r- (25)

Juxt.aposing the equations (24) and (25), we obtain the equation for %3
Yr=Vrr—WYrGr Vrr, ‘ (26)

whence, equating the terms of identical order, we find

’
s o
-

fighr
where the stroke at the sum points, as above, to the absence of terms
including the diagonal potentials Uri rk. The additional condition

Cvr¥2r 2 Urfl.;. Fragl’s o “(“5{
= h 1 , :



notably diminishes the number of terms in the sum. The expres-

sion (27) is valid for any [', including ['= C,-

We shall pass now to the inelastic scattering. Its amplitude
may be written by three equivalent methods:

Trre=—1 f Fr(Urre= V2 )7, dr, (28a)
0
17 oy \E
Tery=— 'kffffr(Urro'f’ “Vir,) Fredr, (286)
v
Trro=— ‘IE [ Fr(Urre+Vrr)Frodr. (28s)

Obviously, this corresronds to "initial", "final" and "symmetric"
inclusion of polarigzation. The three expressions (28) are equivalent
only in the dase of exact solution of the problem, When using appro-
ximate functions €] or potentials 9, these formulae lead to different
resulte. Let us note that an analogus situation occurs in regard of
exchange interaction (known "post" and "prior" approximations).

The connection of potentials ‘V’m and vpr. is obtained by a
method analogus to that utilizied when deriving the expression (26),
but the compu'batione are somewhat more cumbersome, We obtain as a
result the following equations: .

Yrred= Vrre— (Urre+ Qfrre) GroVrors:
Vire=Vrre=— VirGr (Urry + o) ' (29)
Wrre=Vrro— (Urrs+Vrrs) GreWrere— _
—VerGr(Urrg+Viro) = VerGr (Urro #Viry) GroVrors.

Substituting here the expansion by powers U Oy we find

()Z'ro"-Z. g gﬂ{ coiTaafee VY, = Z.u; i Urr, ax 0
Frel, rar (30)
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Cv‘.ro;:;‘.znr'—‘ Urr,- e rn-|ro_A%'°
[T, T,

For A% we shell limit ourselves to the expression tillthe Lth order :
Arre= Urrorro + :«'-IU rrirorre+ Urrarirro+ Urrorr;ro)- (31)
. 1 . -

Let us note that the nondiagonal potentials % and V coincide
in the 2nd order, and the diagonsl ones -~ to the 3rd order. We shall
call the potentials O as well as V polarizaetion potentials.

The representation of the exact problem of elastic scattering
in the form of a three-dimensional one-part Schrodinger equation was
made in the work [6]in 2 more abstract form. There too were formula-
ted variational methods for the determination of ‘srp. Certain partial
expressions for the polarization potential of the 2nd order were given
in Temkin worke [3 - 5). A nondiagonal polarization potential was also
introduced in the work [9], but in a form somewhat different from the

. one utilized above.

4, APPROXIMATION OF TWO STATES

To illustrate the various representations it is useful to con-
sider a two-level system. In the representation of the distorted waves
F the tramsition amplitude will be written in the form:

Tu=— & f FiUu+VioFodr, . (32)
0 ' '

where Vlo is the sum of terms of odd order:

Vie=U10GoUo0t G U0+ . . . (33)

At the same time, in nonsymretrical representations of elastically-

scattered waves C)&.O:’- Joi=0, T. e.

T=— & z[ AUWFodr=~ f FUodr.  (3Y

v
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At the same time the polarization is fully accounted for in
the functions F. Moreover, in diagonal potentials only the terms of

the 2nd order are different from zero:
Vy=UaG\Use; C)}1=Uloéoon. | (25)

A symmetrical reprecsentation of the expression (288) in case of a
two-level problem is less practical, for it leads to overestimztion

of the polarization in wave functions ensuing O},#0. and namely:

Qo= —V1o.

It must however be underlined that a similar result refers only to

a two-level aprroximation. In the presence of virtual levels the sym-
metrical representation may result very useful.

" The representation of elastic scattering permits the subdivi-
sion of trajectory distortion effects and — specifically - the tran-
sitions to be made in a more evident fashion, Gemerally speaking, the
introduction of but only an approximate expression for q,,'.into the
equation for elastic scattering is usually more appropriate than the
utilization of the perturbation theory with the very same apvroximate
expreszion for Vpmp.

Thus, thanks to the introduction of the polarization potential
the solution of a type (2) - or (11)— infinite system is replaced by
the solution of independent‘equations (6) for F and ;’ and also
(in the second representation) of equations (22). Naturally, in their
general form these transformations bear a formal character, since the
difficulty of the solution of an infinite system are transfered to
the computation of a complex series. However, the physical sense of the
equations with a polarization potential appears to be significantly more
descriptive, Besides, the formulation of approximate methods for the
potential is in many case simpler and more descriptive than for wave

functions,
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II. APPROXIMATE REPRESZNTATIONS OF THE POLARIZATION POTENTIAL,

1. Approximation of the 2nd Order.

In this subdivision we shall limit ourselves to the apvoroxima-
tion of the Znd order (i.e, to the first diseppearing aprroximation)
for the polarization potential. At the same time, as was shown above,
the expressions for V,ﬁPﬂ ﬂ?'and Y coincide. For the sake of defi-
niteness, we shall write in the following “11; ,ﬁhile the formulas
brought up will be in an equal measure valid for a diagonal potential
(at "= ro).

Preserving only the term of 2nd order, °Php may be written in

the form of a sum by a single set of intermediate dlstances (altl)

=2Urr r'—z Urr] Gr, Unrn . . (36)

[ ‘l T 'Y o ‘1

Here a is a set of atom quantum numbers, il is the orbital guantum

number of the outer electron. The cuantum numbers LT’ ST'kl are deter-
’

mined by the law of energy and monent preservation, and thus do not

enter into the number of summation indices. In pzrticular,

Ri?=ko’+eo—e1=k2+€e—rs,, 37
where E, and El are the energies of the initial and intermediate
states of the atom.
Formula (36) may be written somevhat differently, taking
advantage of the spectral representation of the Green functions :
Fy(nFa(r
Gr,(r,r') = Z *'() '(--) , 13%)
where the sumrzation spreads over all the operator's I;rl eigenvalues
(including the continuous spectrum; see formulae (4) and (7) ). Substi-
tuting the equalities (37) and (38) into the formula (36), we obtain

oo/o.
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Urrl(r)Fh,'(')Fk; (r'YUr,ro(r')
&1+ k2 —go—kg? '

C))rr.(".f') =Z

ah

139)

The exprescsion for ’l{..,.by radial inte;rals is brought up in
Addendum 2,

2. ADIABATIC APPROXIMATION.

In a greater part of practical calculations the so-
called adiabatic approximation is being utilized., It mzy be obtained

by assuming the Green function in intermediate state equal to

Gry(r, )= — 2 Br=r'). (40)

This expression follows outright from the spectral representation of
the expre::sion (38), if we take advantage of the completeness of
funct:.ons' F ' assembly, assuming then k2—ki’<e,—es. Obviously, we
may take for 1A5 with equal success, Ae=e;—e, and Ae=g;—e..

In the adiabatic approximaticn the "nonlocality ™ of the pola-
rization potential is only connected with the exchange effects (see
Addendum 2). Let us pause at further length on the most important parti-
cular case - diagonal polarization potential without accounting the

exchange. According to formula (36) and ( P, II), we then have

W)=~ T (1) 4,00 )

For greater clarity of the following here and further, radial integrals
are denoted y*_  instead of y’;li vhich also underlines that radial
functions of the optical electron factually depend on all the quantum
numbers of the atom.

The potential “VYp in (41) derends on the quantum numbers of the

outer electron and 'i_and on the total moment I"I" If we substitute

iy
it by the expression averaged by I’T’ the summing up by 11 may be
clearly fulfilled utilizing formulae from the Addendum 1,
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As a result we obtain (a=LpS,nmiL;, LpSp Vbeing the moments of the
initiel iomn):

* ) 4(?;:.
D= Yu(r) =~ Z "%‘ 2x+1) (2L +1) (e1—2)

-aFa

(42D (42)

where Q;a is the part of the expression for the oscillator of the
2x— pole transition depending upon the moments; in the general case
it may be written using 6j and 33j - symbols :

x ILL )2 2 ’
Q,a‘=(2s+1)(2L+1)(2L,+1){L1P:x} (2z+1)(21.+|,(f,%’5). (43)

The summation by nl in the equality (42) may be .replaced by
the solution of an auxiliary equation with the aid of a well-known
procedure (see for example the owrk in ref, [6] ). Assume that the
functions P_ (r) are the solutions of the Hartree-Fock equation

' [Lo—e:]Ps, =0, (44)

and that the function @(r, r) is the solution of the inhomogenous

equation
(Lo, +eilp(r, 7) =‘_'.'j(; (', 1) Palr’), (45)
Ki(r', r)= ;},,,——&,, f ’—:i,P..ﬂ(r'.) dr'. (46) :
>y s

(here the operator L acts on the coordinate r'):

The substitution ¢(r, r)=g(r, r)P.(r) is easy to effect in the equa-
tion (45). The function g satisfies the equation

g+2 ;:g'ul.ga' —K: (P, 1) (47)

(the derivatives in the left-hand part are taken by r'). The operator

AL = L"l — L, has a very simple form in cases offering interest.
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As 38 well knowvnm the Bartree~Fock operator Lal depends on
the main quantum number ny only through the nondiagornsl parameters
énl n® Inasmuch as we do not take everywhere the nonorthoganility
of atomic radial functions into account, this dependence can be neglect-
ed., Then, utilizing a method analogus to that used in thc work [6],

we may show that

l {o
Z;l:;[y:.,(')]’=[k?(r'. r)e(r, r)‘P..(r') dr'=

{48)
fK'(r' ryg(r’, r)Pd(r’) dr’

and, consequently,

4Q e
cv.(r)=—.§ @) LT fK’ ' e NP dr'. (39

The -function g depends on the states a and 8. If we neglect the
weak dependence of g on L;, and if we effect the summation by Ly
we shall obtain

Q}.(r)-—gi%gl—l)- (‘)‘5; J K= (¢, 1)g(r', r)P2(r) dr'.(492)

At AL = 0 ( to that effect it is generally cpeaking necessary
that l =13 L, =L. ) the equation (48) is resolved in quadratures:

= f e f Ko, NPA(x) dri. (30)

Let us examine now the behavior of Pe(r) at r —» 0 and r —00.
In the first case y, (r) ~r* and the basic role is played by the
term with X = O, i, e, with l.l= l and L, =L. Formula (49) gives

0./..
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% (0) = -4‘f;,f‘,{-,5[ f(-} -<i >)p 2(x) dx\],

(51)

In order to estimate this quant:.ty we shall postulate
(A being the normalizing factor). Then, we have for the neutral

atom 'V (0) = = 1/'.. =. <-1-

At r o0 the term with = 0 in ‘Va decreases exponen-
tially. At X 9& O, Y~ r—%-1 gnd the main role is played by the
term with k= 1, i, e, with ll =0+ 1. From the expression (42) we
obtain the well known expression :

Woz- 5 b= Z(ef-f-":)ﬁ- - 62
where b is the atom polarizability, and faal is the force of the dipole
transition oscillator.

It must be noted that although the dependence ’v.."' 4 (T—> )
is general, the expression for the coefficient b is only valid after
‘averaging Lva' by LT.

In practical calculationsthe approximate exprescion of the form

. b \

.%(f)*“@:?g)—w (53)
where r, = <r>, i,e. is equal to mean radius for the optical elec-
"tron, is often utilized. This formula gives a correct asymptotic for
'\7‘(1'), but at r = O . ’)’az— b/ r: . For hydrogen this quantity is
equal to — 0,8, while the correct value is equal to —1. The error
becomes significantly greater if for the main term in the sum (52)
~¢, ~¢<€¢t. Thus, for Fa, b/r = 1.1, while a most correct estimste
gives |’)’ (O)‘ = O.4, Generally, formula (53) apparently gives in most
cases an overrated value for Wa(o)l . In connection with that it
should be noted, that the accounting of nonadiabaticity leads, as will

value §,(0) = o,

<

be shown below, to the
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3. DISRUPTION OF ADIABATICITY

In the adaiabatic approximation the Green function of the
compound state is assumed proportional to the $ — function (formu-
la (40), In reality, this.function has a finite width, which leads
to the "nonlocality™  of the polarization potential and may, general-
1y speaking, substantially reflect upon the results. For the qualita-
tive clarification of the role of this effect we may utilize for Grvl
the Born approximation with Il = 0.

According to formula (15), we then have for the energetically
unattainable intermediate states o

Gr, ~Go == g et —emtirtrt] (k2<0),  (54)
1 .

q|2=—k|2=81"80—k0 =8|—e"'k?v ) (55)

" and for energetically attainable intermédiate states
Gr, =Gy =— QIE [Tt — ™) (R2>0). (36)
1 .

It must be stressed that the utilization of the functions qu or le :
instead of the exact function Gp bhas only a slight smoothing

effect on polarization potential's kernel '"smearing out", without
influencing the character of interaction, It may therefore be expect-
ed that such an approximation will be aprlicable also for real quan-
titative calculations,

Let us consider sgain the case of diagonal polarization poten-
tiel without the exchange terms, assuming at the same time the energy
of the outer electron to be so low that 1&2 < 0 for all intermediate
levels. The adiabatic approximation is generally applied precisely
in this region., Its ineffectiveness at high energies becomes obvious.
Inasmuch as qu does not depend on il' we may again effect the ave-
raging by Lp. Then, instead of the expression (42) we shall obtain
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the nonlocal operator with =a kernei

’ 4Q" , .
%(r_’ r)=‘z'=§‘ @)L+ 1y Yu (D00 (0 yu(?).157)

Fig.1l ehows qu(-r, r') at r?-l and two values of q.
It nust be noted first of all that

— [2eGq dr= -qA-f,(l-ef"') (Ae=e1—¢), (58)
1

while in the adiabatic a:proximation the left-hand part of the
expression (58) is equal to the unity. For not too small values of

q((-q’,Z,ézi)- when the width of

,_G,' (v}

the function qu
still is rather small, we may
utilize as a first correction
the adiabatic potential, multi-
plied by the factor (58). Let |
us note that this factor is
zero at r = 0 and it is grea-
ter than the unity at greater r,
e since qla < At.
The width of qu increa-
ses with the decrease of
qi(k*~Ae) , and at q;—>0
G, = min{r, r'}, i.e,it has

Q
nothing in common with the & — function. In particular, the integral

(58) diverges. If Gq; varies more slowly than y™(r) and Ft‘ (r),
the tramsition to the local potential is generally impossible,

In the adiabatic approximration the polarizational correction
for the elastic scattering is given by the linear combination of
integrals of the type

Ny (0 Fr(niar.
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In another boundary case 9 —» 0 we have

I v Er(ny () Fe(ryrc drar.

The oscillations of the subintegral functionrmay Play an important

‘part in the last integral. We thus may expect a decrease of polariza-

tion effects by comparison with the adiabatic approximation., Whether
or not this effect or the correction for the normalization (58) will
predominate — it depends upon the concrete conditions.

Usually it is reguired as a condition of applicability of the
adiabatic aprroximation that the velocity of the outer electron be
much lower than that of the optical electron, i.e. k2 € ¢ . Stiffer

requirements stem from the above-conducted analysis :
1) gi2=Ae, i. e. < Ae<e;
1
2) ql>->;i
where a is the dimension of the region in which 1711(10 varies
sipnificantly. The value of Qg depends on the energy of the interme-

diate state €y That is why the conditions of adiabadicity may be
fulfilled for some intermediate states, and not for the others,

- In fact however, it is usually possible to separate in the sum by &

in the formula (24) one main term, which simplifies very much the cal-

culations,

The author expresses its deep appreciation to I, I. Sobel 'man

for discussing the present paper.
22 THE END 4#»
Translated by ANDRE L. BRICHANT

‘ under Contract No., NAS=5- 2078.
24 October 1963

Addenda 1 and 2 follow,.
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APPENDIX

ADDENDUM 1

The expression for the potential Upp includes the parameters
Arr, QLo Bir - Presented below are the formulae for these parameters.
Arpr= —ep+- %i= ~e+ 4"2:,

where el and €, are the energetic parameters of the Hartree-Fock
equation for the optical electron. However, it should be noted that-
the equality if formula (Ad.1l) tekes place only approximately (with
a precision to the variation of polarization energy of the atomic resi-
duum at optical electron transition).

If - 1
I'=all;St; a=vaSpZ§LS
where Lp§, are the moments of the original iom, {T are the moments
of the optical and outer electrons , LS - the moments of the atom
and I‘l'sT the total moments of the system, then

o= 85 — 1) T=¥ (LI CH 1) (11, Cil17) {"J i} B

Sr+§—s R , xLl}
o= (=1
(=D (“Clll ) (dilciil ){ L Vi
- 1 L0
where (TICH ) = (= 1)* (24 1)2 (2 + 1) {000}

In case Ly = SP = 0 (one electron beyond the filled shells) pj.=v.=1.
In a more general case P =5PP,(__1)’+I-+!- (0L+1)2(2L'+1)2{LP[1}
5,25'
Vip=0pp(—1)"" =5 @S+ 128+ 1) ] (X

22

\<(2L+l)’(2L’+l)’{:[I:,r} Z(2L,+1){L } {Lif}{g }
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If the atom has in the state a N equivalent electrons
and consequently, the term LPSP ie not given, them u;, and vin
ought to be averaged by I‘PSP e 1.e., instead of (Ad. &) x and"P

should be substituted into the mean values
Pn"_}_. Gzpsplr";r': Yrre %Gfisp"rr"

where. Gfgs; are the Racah genealogical coefficients, The averaging

by I'PSP’ utilizing the coefficients G/Y,. must be effected in exact- ,

ly the same way, provided there exist in the state a' several equi-

" vaelent electrons in the outer shell.

We shall bring forth some particular values of the coefficients

o and P As may be seen from formulae (Ad.3), (ad.4), « is not
dependent on spin (if we do not consider the selection rule S =8'),
while P may be written in the form of a product of independent mul-
tipliers: '

p=p(S)B(L). (Ad. 6)
At sz 0 -
Sr=0; 1; B(S)=(—1)*+, (ad. 7)
At sp- —;-'- s three types of transitiona are poscsible:
L= Sp=gi BS)=1, (Ad. 8a)
IL=3L% Sr= -1—; Prr(S) =Ber (S) =1, Brr= g, (4.8 )
, _
1 3 3(S'+—2_) sr4 )
SL=-3L" Sr=3; 9; B(S)=——7—




Let us examine now the orbital part, limiting ourselves to the

case LP=0. At the same time L = , L' = [', The coefficients a?. and

al,.. are always equal to 1. Written velow are the coefficients different

from zero. We utilize the denotation g= 21 + 1; g' = 2 ' +1,
1. The tramsition § = S: I=l=0; [=F~Lq

ap =1; (ad. 9a)
Bi (L) =ph.(L) =BL (L) =
1=0; U=1, l_’=l::l; Lr=1,

al,,=-:(8’_=t_l*. 2 _ &%3
6g |’ ™7 10g °

VQI--

2e T:_ransition S -P

7 1, _ 3gxl\y
L) = g. (D=7 g,( )

ADDENDUM 2

In the 2nd order of the perturbation theory, Vn.o is expressed by
the sum by f'l from Urrro
Ureire(r, "'Fl'o"“,' ,a;",r.yltll(})cﬁ (r-")lh:;(H)Fro(f’? =
-Za'l‘hp;:ro y:h (f) Grl (I’, f’) y:l'. (l") Pln(r,) -
= ZBin %in, Pu(r) 8o, (1, Wi (P Frol) + (ad.10)

+2 8. Brn, Pu(7) Ui, (717 4 (P Pu(r)

The radial integrzls yu, and 4,; are determined by the formulae
(Add. S5a) and (Ad.5 ) ; as to yj, it is obtained from the equality (5 )
by substituting Gn(r, r') for Frl (ry)e From the last determination

it is evident that y’w is dependent upon two variables.
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In the adiabatic approximation
1 ~
Gr1= -'—A:o(r—r’)

and the integration over r' can be ef‘fected. The polarization poten-
tial (the first term of the right-hand part of formula (Ad.10)) beco-
mes local, while the exchange terms preserve their nonlocality. w

We obtain

VUrr,rJ"ro’*[ Urriro(r, f')f-"r;(r') dr'=

aua;’.
“‘Z‘: ra y';,ty“,. r°+

lp‘IO ’
Zua" 2 yn g Por (Ad.11)

Z @ > I‘;l’. w’ ‘ Zpll‘ Tnfo

xx’ P
u &la =Y for

Ae Ulile

where the denotation

V5 D). =4[ [dr, desK* (r,r) K*(r, £2) Pe{r1) Fry(r1) Py (r2) P (r) - (AdL 12)

has been introduced, and K*™ are kernels of the integrals (5a) and (54 ),

while the form of the kernel must correspond in the respect:.ve temm
of (Ad. 11) either to the coefficient % or P

END OF THE ADDENDA.

es References ,.
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